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1 Overview

I am an applied mathematician with background in Analysis, Calculus of Variations, Ordinary and Partial
Differential equations, Stochastic Analysis and Homogenization. In particular, I study the qualitative behav-
ior of nonlinear PDEs of elliptic and parabolic types, as well as variational problems associated with them.
I have been developing mathematical methods that enhance our understanding of physical phenomena, such
as formation of singularities in superconductors, microstructures in alloys, curvature-dependent evolutions
or long-time behavior of systems influenced by random perturbations.

My PhD thesis was devoted to the analysis of variational problems related to the Ginzburg-Landau model
of superconductivity and corresponding nonlinear elliptic equations. At the present time I am a Courant In-
structor working on modeling microstructures in martensitic phase transitions using minimization techniques
for nonconvex singularly perturbed energy functionals. Several of my works are on the long time behavior
and asymptotics of stochastic reaction-diffusion equations. In addition, I worked on numerical discretizations
for the nonlinear Richards equation and on the problems related to modeling curvature driven flows.

Calculus of Variations and Pattern Formation

Crumples in a sheet of paper, wrinkles on curtains, mixtures of phases in alloys, and Abrikosov lattices
in superconductors are examples patterns in materials. My research goal is to understand the formation of
such patterns from the point of view of energy minimization, which is is one of the challenges of modern
Calculus of Variations.

The objects of my research are nonconvex energy minimization problems, regularized by higher order
terms. Such models are common in materials science. The Ginzburg Landau model of superconductivity is
one example of such models. This model was suggested by the physicists Landau and Ginzburg in the 1950s
as a phenomenological description of superconductivity. The discovery of patterns of vortices (or defects)



in superconductors led to the 2003 Nobel Prize in Physics, awarded to Ginzburg, Abrikosov and Leggett.
In the papers [16] and [17] (with L. Berlyand and V.Rybalko) we establish the existence of minimizers with
vortices, as well as, in certain cases, we find the locations of the vortices of these minimizers. The papers [18]
and [19] (with P. Mironescu and M. Dos Santos) are devoted to the analysis of composite superconductors.
In these works, described in a greater detail in Section 2, we are able to obtain the homogenized description
of the superconductor with a large number of asymptotically small inclusions of a weaker superconductor.
In certain regimes we also determine which of these inclusions contain vortices.

Another prominent example of a Calculus of Variations model which accurately captures the formation
of experimentally observable patterns is modelling of martensitic phase transformations. A comprehensive
description of microstructure formation in martensites and the associated shape-memory effect, can be found
in the monograph [1] by K. Bhattacharya. A number of physical experiments indicate, that if two different
pure phases of martensite are present at the opposite sides of a rectangular sample, the transition between
these phases can take the form of a zigzag wall. In our work we consider nonconvex minimization problems
that capture, we believe, the essential physics of this phenomenon. One of my projects at the Courant
Institute (with R. Kohn and S. Muller) deals with the scalar elasticity model of phase transitions with two
distinct phases of martensite present at the opposite sides of a rectangle. My second project (with R. Kohn)
is devoted to the vectorial (3D elastic) version of this problem. In both cases we establish the global energy
scaling laws, and show that the experimentally observed zigzag patterns provide the optimal energy scaling.
In addition, in the scalar model we were able to obtain the results on the local distribution of the minimal
energy, which is a fairly rare finding for variational problems of this type. These results are described in a
greater detail in Section 3.

Stochastic Reaction Diffusion equations

Nonlinear stochastic reaction-diffusion equations describe physical and biological processes including heat
explosion, tumor growth and the evolution of biological species in random environment. In these models one
of the important questions is whether the quantity of interest (e.g. the tumor, the population etc.) stays
bounded or continues to grow as time elapses. The answer to this question is far from trivial, as illustrated
in the following example. Consider the equation

uy = Au +sin(u) + F. (1)

Here x € RY, and F € R is a fixed parameter. We are interested in the long time behavior of solutions of (1),
specifically, in the existence of bounded solutions as t — co. Clearly, if |F'| < 1, bounded solutions exist, e.g.
u(t,z) = —arcsin F. Conversely, if |F| > 1, no solution of (1) is bounded. However, even a small random
perturbation of the right hand side of (1)

up = Au+ sin(u) + F + W (t),e > 0 (2)

completely changes the picture, since explicit bounded solutions are no longer available. To the best of
our knowledge, the question whether one can find a solution of (2) satisfying sup,~, E|lu(t)[|*> < oo in
some suitable norm, is still open for any F € R and € > 0. Despite the fact that currently we have not
established the existence of a bounded solution of (2), the Section 4 describes a large class of stochastic
reaction diffusion equations, for which bounded solutions exist. In addition, in certain cases we are able
to show the uniqueness of a stationary solution to the stochastic reaction-diffusion equation. Establishing
the existence and uniqueness of stationary solution is also important since it is a crucial step in showing
the ergodic behavior of the corresponding system. We further investigated the asymptotic behavior of the
stationary solutions under both regular and singular perturbations of homogenization type.

2 Ginzburg-Landau model (PhD thesis)

My PhD thesis was devoted to variational problems and PDEs related to the Ginzburg-Landau supercon-
ductivity theory. These problems are very interesting from a mathematical standpoint. In the process of



their rigorous analysis we developed a number of novel mathematical concepts and methods, which may be
useful in the analysis of other mathematical models. Moreover, these variational problems were motivated
by physics and contribute to a deeper understanding of certain physical notions, such as vortices, which are
an inherent feature of superconductivity.

Superconductivity is the complete loss of electrical resistance that occurs in certain materials below char-
acteristic temperature. The Ginzburg-Landau (GL) model was introduced in 1950s as a phenomenological
description of superconductivity. The success of the GL theory in predicting complex, physically observable
phenomena in superconductivity led to the 2003 Nobel Prize in Physics. At the core of this theory is the
GL energy functional (GLF):

1 1 A
GLlu, A] := §/§Z\cur1A—H|2+§/G(|(VfiA)u|2+§/G(lf|u|2)2, GCR", n=23. (3)

Here Q) is the smallest simply connected domain containing G, A is the vector potential of the induced
magnetic field, H is the applied magnetic field, u is a complex-valued order parameter introduced so that
|u|? is proportional to the density of superconducting particles (Cooper pairs), and A is the Ginzburg-
Landau parameter, which depends on the material. The standard normalization implies |u| < 1, with |u| =1
corresponding to an ideal superconductor and |u| = 0 to a normal conductor. Isolated zeros of u around which
the vector field u has a nonzero integer winding number (degree) are called vortices. Understanding the vortex
structure of GLF minimizers (solutions of the GL PDE) is crucial, since vortices determine electromagnetic
properties of superconductors that are important for practical applications (e.g., resistance).

In part I of my thesis (the works [16], [17] and [21]) we established the existence of minimizers (both
global and local) of the Ginzburg-Landau energy functional (3), in which the external magnetic field H
(which is the physical source of vortices) is replaced with the degree boundary conditions. In other words,
we considered the minimization problem for (3) with H = 0 and G C R? in the class

Ja = {(u,A) € H(G,C) x H(Q,R?), |u| = 1 on G, deg(u,0G) = d > 0.} 4)

Here deg(u,0G) := i fac u X urds is the winding number, which gives the lower bound on the number
of zeros of an H'(G) - regular function. The function class Jz is a connected component in the space
{(u, A) € HY(G) x H*(Q), |u| = 1 on OG}. However, this class is not weakly-H'! closed, thus the existence
of minimizers for (3) in Jy is a highly nontrivial question.

The work [16] (with L. Berlyand and V.Rybalko) deals with Ginzburg-Landau energy functional in simply
connected domains. We established the existence of minimizers with vortices (zeros) for certain values of the
Ginzburg-Landau parameter (which are lower than the critical value A, = 1). We also observed that the
vortices of these minimizers were inside a fixed compact set (strictly inside the domain) for A close to 1. On
the contrary, in doubly connected domains [17] we observed a different picture. We established the existence
of minimizers with near boundary vortices, which converge to the boundary of the domain as A approaches
Aer. Furthermore, we found the limiting location of the vortex on the boundary. The main ingredient of the
proof was the energy expansion, obtained through sharp upper and lower bounds. As typical for problems
of this type, the lower bound was the key challenge of this work.

The work [21] focused on the local minimization problem for simplified Ginzburg-Landau functional
(obtained from (3) via setting both A =0 and H = 0) in doubly connected domain G = Q \ w:

1 1
Bl = g [ V0P + 25 (1= e )

This minimization problem is a subject to “semi-stiff” boundary conditions |u| = 1 and prescribed degrees p
and ¢ on the outer 0 and inner dw boundaries respectively. It is not difficult to see that due to the lack of
compactess of the boundary conditions, the global minimizers of this minimization problem seize to exist. In
order to find local minimizers, following the work of L. Berlyand and V.Rybalko [20], we additionally prescribe



the degree in the bulk (approximate bulk degree), which, in the simplest case of a radially symmetric domain
G = Bg(0) \ B;(0) is given by

1 Bl dé
abdeg(u, G) := W/r <Q7r /ﬂ_gu X qus> 3

If w. is chosen such that E.[u.] < A, where A > 0 is a fixed constant, then for sufficiently small ¢, the
quantity abdeg(u., G) is close to some integer d € Z. The work [20] established the sufficient conditions on
the existence of Ginzburg-Landau minimizers. Specifically, it is shown that if d > 0 (d < 0) is such that
d > max{p, q} (d < min{p,q}), then the minimizers exist in the class

d ._ — — —
J¢={ue H(G),ul =1 on 0G,deg(u, Q) = p,deg(u, dw) = q, abdeg(u,G) € (d —1/2,d +1/2)}.

My work [21] complements the result of [20] and provides the necessary conditions for the existence of min-
imizers. Specifically, using sharp upper and lower bounds, I show that if d > 0 (d < 0) and d < min{p, ¢}
(d > max{p, q}) with p # ¢, the minimizers in J;,{q do not exist. The question of the existence of minimizers

in ng with p < d < q requires a different approach. This question is currently open.

Part II (the works [18] and [19]) was devoted to modeling composite superconductors. This work was
motivated by physical models of vortex pinning (i.e., fixing the positions of vortices), which was done
by introducing inclusions into a homogeneous superconductor. In the work [18] (in collaboration with P.
Mironescu and M. Dos Santos) we consider Ginzburg-Landau type functional

. 1 1
B2f) = 5 [ Va4 gl - o) de (6)

with the rapidly oscillating discontinuous pinning term ags(x), which takes values 0 < b < 1 on a two-
dimensional d-periodic array of inclusions inside G, and value 1 otherwise. The starting point of our analysis
is the strikingly simple decoupling strategy due to Lassoued and Mironescu [8]. Let U, be the unique scalar
minimizer of (6) subject to the (scalar) boundary condition U. = 1 on G. It is not difficult to verify that
b < U. <1, with U, being close to a away from the inclusions’ boundaries. Thus, without loss of generality
we look for the minimizers of (6) in the form v = U.v, which leads to the following decomposition:

E.[u] = Ec[Uc] + Fc[v], (7)

where ) )
_ 2 2 401,12 2

R = 5 [ U9+ VAR - e (3)
Despite the fact that the Euler-Lagrange equation for (8) is nonlinear, we are able to adapt the linear
homogenization techniques to obtain homogenization limits for the minimizers of (8) depending on the
relation between § and ¢ (i.e.  >> ¢, § = ¢ and § << ). The subsequent work [19] (with M. Dos Santos)
was focused on locating the small inclusions with vortices. We showed that even the inclusions of negligibly

3

small size § — 0 capture the vortices of minimizers, provided lﬁfs — 0, — 0. Furthermore, we reduced
the problem of finding the locations of the vortices of minimizer to a discrete minimization problem for a

finite-dimensional functional.

3 Pattern formation in variational problems

My first project at Courant Institute (in collaboration with R.Kohn and S. Muller, preprint) deals with the
minimization problem for the functional

I[u] := / (Juz* + €luyy|)dzdy — min (9)
R



Here R = [0,1] x [—%, %]7 and the minimization is performed in the class of functions
W= {u € H'(R),|uy| = 1,u(0,y) = y,u(l,y) = —y}. (10)

In other words, the admissible functions can have either u, = 1 or u, = —1, and thus u,, is a Radon measure
with finite mass. The functional (9) is a sum of elastic and surface energies, and can be used to model phase
transitions in alloys, in which the regions with u, = 1 and u, = —1 correspond to two distinct phases of
a martensite. The boundary conditions u = 4y at the left and right edges of the box respectively indicate
that different phases are present at the boundaries. Some physical experiments, e.g. [2], [3], [4], suggest the
formation of zigzag patterns, however the rigorous explanation of this phenomenon in the physics literature
is missing.

The earlier work [23] studied the same functional with different boundary conditions. In particular, as
shown in [23], the boundary condition v = 0 at the left side of the box R leads to the emergence of branched
microstructures. While these microstructures have oscillations with the approximate period of £'/3 in the
bulk of a sample, they have much finer scales closer to the left boundary, since the boundary condition is

not compatible with either of the phases of the martensite. The energy in that case is of order £2/3 and is
concentrated primarily near the left boundary. That is, for a.e. p € (0,1)
%
/ (1 + eluyy ) (o, y)dy = C22p72%, (11)
3

The subsequent work of Conti [9] showed that the minimizer, roughly speaking, has a self-similar microstruc-
ture near the boundary, and established local-in-x and local-in-y energy estimates for the minimizers. It is
worth mentioning that, in contrast to establishing the global energy scaling laws, results on the local features
of the minimizers for nonconvex variational problems are rare.

The minimization problem for (9) in (10), which is the object
of our current research, is of somewhat different nature due to the
presence of nontrivial relaxed energy. If we relax the constraint
luy| = £1 to |u,| < 1, which corresponds to the convexification of
the double-well potential (u2 — 1)?, the minimum of (9) in Wy :=
{u € HY(R),|uy| < 1,u(0,y) = y,u(l,y) = —y} is attained by an
explicit relaxed solution u,(z,y) = (2x — 1)y with I.[u,] = . Direct
integration shows that I.[ue — u.] = I-[uc] — I-[us]. In contrast, the
problem considered in [23] and [9] has u, = 0 with I[u,] = 0. We
start with the global scaling law.

Theorem 3.1. Let u. be a minimizer of I.[u] in (10). Then

Figure 1: Experimentally observed c16%% < Lfue — uy] < 26 with ¢y ~ 2.56 and ¢y ~ 2.62.
zigzag wall, [3]

The lower bound is proved using an anzatz-free argument. The
upper bound is established via constructing a piecewise linear (in both x and y) test function, reminiscent
of the experimentally observed zigzag construction. While at this point we cannot say that this zigzag test
function is an actual minimizer, we can say that it shares some common features with the minimizer beyond
providing the global energy scaling. In particular, we establish the local energy distribution.

Theorem 3.2. Let u be a minimizer with u — u, satisfying periodic boundary conditions at y = :I:%. Denote

R, =10,p] x [—1,1] with p> 0. Then

LL<u—uni+eWWMMdyscﬁ”%ummF (12)

P

and

1/2
/U;u—mﬁwwmyscwﬂmww. (13)



Notice that the energy in this case behaves significantly different, as compared to the branching case
of [23]. In particular, (12) indicates that the energy is distributed almost uniformly (modulo the logarithmic
factor), as opposed to the branching case, when the energy blows up as we approach the left boundary of
the sample. The zigzag test function satisfies both (12) and (13) without the logarithmic prefactors, which,
we believe, can be removed. We also establish the dependence of the optimal energy on the vertical size of
the domain via establishing the existence and the rate of convergence of the thermodynamic limit.

Theorem 3.3. If u” is the minimizer of

N 1
= [ [ = el ldedy, (149)
0 0
then, for any N > 1, we have
1
SN = L) 4 o), 0, (15)

and the limit of the left hand side as N — oo exists. (Recall that, by Theorem 3.1, I} [u'] ~ &%/3).

Clearly, had we known that u — u, was periodic, (15) would have read &I [u™] = I![u'], which holds
for the zigzag test function.

Current work. My second project (with R.Kohn) is devoted to modeling the phase transitions using
the 3D elastic analog of the scalar functional (9). This problem is motivated by the physical experiments
in [5] and [6], where the zigzag transitions were observed experimentally under the mechanical deformation
(bending) of a thin alloy over a cylinder. In our model we assume that a material has two preferred elastic
strains

e23 = ez = £1;e;; = 0 otherwise;

81» j 8"0 i .. .. . .
where e;; := #, 1 <4,5 < 3. We study the minimization problem
E.[uy, uz2,us] := / [e2, 4 €2y 4 €25 4 2625 + 2e1, + £]0,, e03|]dr — min (16)
Ry
with Ry = [~1,1]3, in the class

W = {(u1,us,us) : ea3 = £1l,ea3 =1 at 1 = 1 and ea3 = —1 at 1 = —1.}

The relaxed solution in this case becomes

Up = —X2T3;
Uy = T1T3;
uj = 1.

However, in contrast to the scalar case, Ep[u}, us, u3] = 0. Our main result is the global energy scaling law
1623 < E.Juy, ug, us) < cpe?/3. (17)

The above scaling result should also hold if the constraints es3 = +1 at x; = £1, which correspond to
the presence of pure phases at the boundaries, are replaced with a volume fraction constraint, which would
allow mixtures of phases at 1 = £1 with different volume fraction of two phases at each component of the
boundary. The upper bound in (17) is obtained by the explicit zigzag construction, suggested by the exper-
iment. To establish the lower bound, we use a convex duality argument. Since the constraint es3 = +1 is
nonconvex, the duality argument may be applied only to the relaxed problem. However, even the minimiza-
tion of the relaxed problem in some, well chosen subdomain of R;, with the strain constraint being present
only on the boundary of this subdomain, turns out to be sufficient to establish the optimal energy scaling law.



Future work. The scalar model (9) and the vectorial model (16) are examples of linear elasticity models
of martenisitic phase transitions. We next plan to extend our results to the nonlinear elasticity setting. S
Conti et al [10] established that the branched microstuctures, reminiscent of the ones discovered in [23],
provide the optimal scaling law in the nonlinear elasticity model with Dirichlet boundary conditions. In
particular, the authors considered the minimization problem

E.lu] := / [W(Du) + &|D?u|]dz — min, u = Id on OR.
R

Here
W (Du) := dist(Du, K), with K = SO3A_ U SO2A,

where SO5 is the group of rotations and AL are preferred martensitic states, e.g.

1+ 10
Ai:(o 1a> OrAi:<o 1:ta) (18)

for v € (0,1). We plan to consider the analogous problem with the preferred states (18) prescribed at the
right and left edges of R. Our conjecture is that in this case the zigzag patterns provide the optimal energy
scaling law as well.

4 Long time behavior of stochastic reaction-diffusion equations

We consider a nonlinear stochastic equation of parabolic type, perturbed with an infinite dimensional Wiener

process
du = (Au+ f(z,w))dt + o(x,u)dW (t,x) (19)

Here u € H, where H is a certain (real) Hilbert space (typically L?(R?) or weighted L2(R?), A is an elliptic
operator on H, which generates a continuous semigroup S(t), f and o are real measurable functions, and
W (t,-) € H is a nuclear infinite dimensional Wiener process. We call the process v = u(t, x,w) to be a mild
solution of (19) with the initial condition ug s.t. E|jug||? < oo, if it is H-valued, measurable with respect to
an appropriate filtration, and for all ¢ > 0 satisfies

u(t) = S(t)up + /0 S(t— s)[f(u(s))]ds + /0 S(t — s)o(u(s))dW (s) (20)

with probability 1.

Equations of this type model the behavior of various dynamical systems in physics and mathematical
biology, such as electric potential on nerve cells in Hodgkin-Huxley model in neurophysiology etc. We are
interested in the analysis of long-time behavior of solutions of (19), in particular, in the study of ergodic
properties of the system (19). A solution of (19), which is a stationary process, defines an invariant measure
for (19). Furthermore, as shown in [26, Theorem 3.2.6], the uniqueness of the invariant measure implies that
the solution process is ergodic.

One of the crucial steps in establishing the existence of an invariant measure is the pioneering result of
Krylov and Bogoliubov, which implies that if a solution of (19) satisfies the uniform boundedness condition

sup Elju(t, z,w)||3 < oo, (21)
>0

then the invariant measure for (19) exists, provided the semigroup S(t) satisfies certain compactness prop-
erties.

The behavior of solutions of (19) is significantly different in bounded and unbounded domains. The prin-
cipal difference is that the semigroup S(¢) of an elliptic operator in a bounded domain G with homogeneous
Dirichlet boundary conditions has an exponential contraction property

Hs(t)uHL?(G) < Ce_A1t||u||Lz(G), u € LQ(G), (22)



where A > 0 is the first eigenvalue of A in G (subject to Dirichlet boundary condition v = 0 on dG). The
estimate (22) implies the existence and uniqueness of the stationary solution for a large class of Lipschitz
nonlinearities f(x,u) and o(x, u), which, in turn, yields the existence and uniqueness of the invariant measure.

On the contrary, in unbounded domains, the validity of the estimate of type (22) heavily depends on the
spectral properties of the operator A. In particular, this estimate does not hold for A = A in R?. Therefore,
generally speaking, the dissipative properties of the diffusion operator in the entire space are often not
sufficient for the existence of a stationary solution, and additional dissipative properties of the nonlinearity
f(x,u) are needed.

The question of the existence of invariant measures in unbounded domains with A = A was studied, e.g.,
in [28]. Loosely speaking, the key result of the work [28] states that there exists an invariant measure for
(19) provided f satisfies the following dissipation condition

uf(u) < —ku® +c (23)

for some k£ > 0 and c € R.

The work [14] established the existence of an invariant measure for (19) with A = A in R? under a
different conditions on f. In that paper, we show that the invariant measure for (19) exists if f satisfies the
global bound:

|f(z,u)| < ¢(z) € LY(RY) N L*°(R?Y), Vu € R. (24)

The case of a nonlocal nonlinearity f(u), which appears, e.g., in the model of nonlocal consumption of
resources [32], was also considered in [14].

In the subsequent work [12] we use a new approach to (19) which is based on the generalized Ito’s formula.
This approach allows us to expand the class of nonlinearities in the right hand side of (19). We show that
the equation (19) has a stationary solution if o(z,u) is bounded and there exists M > 0 and non-negative
n(z) € L*(RY) such that for all z € R? we have

uf(z,u) < n(z) for |u > M and = € R% (25)

Notice that the condition (25) is a much weaker condition compared to (23). In this paper we also show that
(19) has a bounded solution if f(z,u) and o(x,u) are Lipschits functions in u, and the Lipschitz constant L
has a certain rate of spatial decay.

The paper [13] was devoted to the asymptotic behavior of the stationary solutions, established in [14]
and [12]. Given € > 0, consider the equation

du = (Au — eu)dt + o(x,u)dW (t,z), = € R (26)

The techniques that we used in [14] imply that the equation (26) has a unique stationary solution u}, since
for every € > 0 the semigroup for the operator A.u := Au — eu has the exponential contraction property.
This stationary solution can be obtained as a limit of a simple iteration scheme. On the other hand, the
existence result for the stationary solution of the limiting equation

du = Audt + o (z,u)dW (t,z), = € R? (27)

is rather abstract and not constructive [28]. Furthermore, we cannot say that the stationary solution of (27)
is unique. We show that within the set of stationary solutions of (27) we can identify the unique solution u*
of (27), which is a limit of the stationary solutions of u} of (26). This way we provide the selection principle
for the stationary solutions of (27). In addition, we can also efficiently approximate one of the stationary
solutions of (27).

We also characterize the convergence of invariant measures in the homogenization limit. In particular,
we show that

E||lus(t) — uo(t)||5 — 0,e — 0.

where u. and ug are the corresponding unique stationary solutions of

du. — {dm (A (g) Vug) e+ f (gu)} dt + o (§u> AW (1) (28)



and
dug = [dZU(onUO) —ug + fo (UQ)] dt + og (UQ) dW(t) (29)

Here A(x) is a measurable, periodic and uniformly elliptic matrix, f(z,u) and o(z,w) are uniformly bounded,
continuous, periodic functions in x and Lipschits in u, fy and oy are the corresponding averages of f and
o over the period cell II, and Ag is the homogenized matrix. Both equations are studied in the weighted
space Li(Rd) with p(z) = e~*I#|. Our analysis is based on the two-scale convergence approach [11] and on
Nash-Aronson estimates.

Future work. I plan to extend the above homogenization result to the case of large reaction terms. In
particular, the deterministic homogenization problem with large reaction term

e o (4(2) %) + 1 (G =

was considered in the work [33] by Allaire and Piatnitskii. In this work the authors derive the homogenized
problem

% = diU(onU()) + F(UO)VUQ + V(Uo), (31)
where F' and V' are expressed via the solutions of the corresponding cell problems. Our preliminary calcu-
lations indicate that the approach suggested by the authors may be extended to the stochastic case as well.
This way we would obtain the convergence of the corresponding stationary solutions in spirit of (4).

In addition, I would like to consider the long time behavior and the existence of invariant measures for
stochastic primitive equations

dv+ (—Av +v - Vv +wiv + Vp)dt = f(v)dt + o(v)dW;
V-v+d.w=0; (32)
d,p=0

Here the unknowns are the velocity field (v, w) and the pressure scalar p. This equation is a form of Navier-
Stokes equation, used in climatology as a fundamental model for a number of geophysical flows. The results on
the existence of invariant measures in the case f = 0, under some conditions on o, were obtained in [35]. On
the other hand, the work of M. Hieber [34] shows the existence of periodic solution in for certain deterministic
nonlinearities. We plan to adapt techniques that we developed for the reaction-diffusion equations in this
case, and show the existence of invariant measures for (32) in the case when both f and o are different from
0.

5 Analysis of numerical discretizations for Richards’ equation

My project with K.Lipnikov (Los Alamos National Laboratory) involved the analysis of numerical discretiza-
tions for the nonlinear Richards equation

% — div (K(2)a(u)(Vu + 7)) (33)
The equations of type (33) are used in modeling water flow in multilayered unsaturated soils. In it, u stands
for the capillary pressure, K (z)a(u) is nonlinear hydraulic conductivity, constant ¢ is gravity and = measures
the depth. Finding an accurate numerical discretization for the equations of type (33) is a challenge even
in 1D. The reason is that the solutions of (33) may have arbitrarily steep gradients, and thus standard
numerical methods may lead to overshoots or undershoots (i.e. the loss of monotonicity), even on relatively
fine grids. Thus, our goal was to develop a numerical discretization that would be monotone in the regions,
where the analytical solution of (33) is monotone, i.e. does not have local extrema. Another computational
challenge for Richards equation is lack of a closed form solution for general nonlinearities. In the work [29]
we were able to derive an explicit solution for a certain class of discontinuous nonlinearities. The derivation



of this explicit solution allowed us to test a number of numerical schemes for accuracy and convergence. We
found a second-order accurate monotone numerical scheme for (33), and derived the necessary and sufficient
conditions for monotonicity of numerical discretizations for the stationary solutions of (33).

6 Modeling discrete motion by mean curvature

My paper [15] (with N.K. Yip) addresses the convergence issues related to a space-time discrete thresholding
scheme for motion by mean curvature.

The analysis of motion by mean curvature (in which the normal velocity of a moving manifold is given
by its mean curvature) is an active area. Not only it is interesting in geometry in its own right, it also
finds many applications in materials science and image processing. It is a prototype of a gradient flow with
respect to the area functional. Due to the possibility of singularity formation and topological changes of
the evolving surface, elaborate approaches need to be used. These include (i) varifold formulation, (ii) the
viscosity solutions, and (iii) singularly perturbed reaction diffusion equation u; = Au — E%W/ (u), where
W(u) = (1 —u?)2

The thresholding scheme is a particularly simple algorithm to capture the key feature of (iii). It is
essentially a time splitting scheme. The first step is diffusion while the second step is thresholding to mimick
the fast reaction due to the nonlinear term. The following simple thresholding scheme was suggested by
Bence et.al [31]. Let Q C R? be a smooth bounded domain, and 7 > 0 be a small parameter. Let Qg := Q.
For each k > 0 and ¢ > 0 consider w(x,t) s.t.

{%(x,t) = Awy(z,t) in R? x (0, 7) (34)

wk.(a:,O) = X (T’)

and set Q41 = {z € R? : wy(z,t)]i=r > %} The sets Q,k > 0 determine the evolution of Q at the
moments of time {k7,k > 0}. As shown both in [22] and [24], this evolution approximates the motion by
mean curvature in the limit 7 — 0.

Now, for given h > 0 (grid size), we considered a semidiscrete version of (34). Let QF := {(m,n) € Z? :
(mh,nh) € Q} and

{a””?’"m = e T (35)

w;,"(0) = xqn

Analogously to Bence’s scheme [31], in [15] we define Q' ; := {(m,n) € Z? : w}"" ()|, > £ }. However, in
contrast to the continuum thresholding scheme (34), intricate pinning and depinning of the interface can be
described with (35) in certain regimes. This is analogous to a gradient flow in a highly wiggling or oscillatory
energy landscape. Our main result is the description of the evolution of QZ depending on the asymptotic
relation between two small parameters h and 7, namely:

(i) Subcritical case h << 7. We have the motion by mean curvature, similar to the continuum case of
Osher et. al.; i.e. the front motion does not notice the local minima of the energy surface.

(ii) Supercritical case h >> 7. The domain Qg does not evolve at all, i.e. Qp = Qq, and the front gets
stuck in a local minimum.

(iii) Critical case T = ph. The boundary points of 2 move with the velocity, different from mean curvature
at this point. In particular, if a boundary point moves by noh (i.e. ng steps in the normal direction)
at time 7, then ng is a function of the curvature x, implicitly defined via the following relation

ViR e pVEE e e e e
Z / edex—Ff/ e Tdr=— e Tdr+ Z / e 1dx (36)
k=1 "0 2 e

O 2
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We also derive an analogous formula for the anisotropic motion in the case, when the front intersects the
grid at an angle 6. To establish those results, we first obtain the discrete heat kernel representation for the

solutions of (35)
. 2 2\ .-
W)= 3 Gt (73) G (73 ) w0
i,j €72
0o (g)2m+n
Gn(a) :=e I, (a), where I,,(a) = Z Z

—=/_ ig a Modified Bessel function. (37)
= m!(m +n)!

We apply the Meissel formula for modified Bessel function to get uniform asymptotic expansions as n — oo
and a — oo. We use those expansions to derive sharp lower and upper bounds for the sums of the discrete
heat kernels and eventually obtain the desired results.

7 Ongoing work, future work and open problems

I plan to work in two areas: the pattern formation using the Calculus of Variation techniques, and the long
time behavior of stochastic equations of reaction-diffusion type. My current and future directions in these
areas are described in Sections 3 and 4 respectively.

In addition, there is a number of open questions that emerged from my research. The answer to some
of these question is of a particular interest to me. Omne of such questions is on the long time behavior
of a stochastic reaction-diffusion equation with oscillating potential, described in the overview. Another
open question is on the existence of local Ginzburg-Landau minimizers in the class Jz‘f’q in the case, when
0 < p < d < q. This question is described at the end of Section 3.
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