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Abstract

We study the minimization problem for simpli�ed Ginzburg-Landau functional in doubly
connected domain. This minimization problem is a subject to �semi-sti�� boundary conditions:
|u| = 1 and prescribed degrees p and q on the outer and inner boundaries respectively. Following
the work of L. Berlyand and V.Rybalko [7], we additionally prescribe the degree in the bulk
(approximate bulk degree) to be d. The work [7] established the su�cient conditions on the
existence of Ginzburg-Landau minimizers, given in terms of p, q and d. The present work
complements the result of [7] by providing the necessary conditions for the existence of nontrivial
(nonconstant) minimizers.
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1 Introduction and main results

Consider the minimization problem for the simpli�ed Ginzburg-Landau type functional

Eε(u) =
1

2

∫
G

{
|∇u|2 +

1

2ε2
(1− |u|2)2

}
, (1)

in a smooth doubly connected domain G = Ω \ ω ⊂ C. Note that any critical point of (1) satis�es
the Ginzburg-Landau equation in G:

−∆u =
1

ε2
u(1− |u|2) (2)

The solutions of (2) with isolated zeros (vortices) are of special importance since they model the
observable physical states during phase transitions in superconductors.

1AMS Subject Classi�cation: 49K20, 35J66, 35J50.
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Minimization problems for Ginzburg-Landau type functionals have been extensively studied by
a variety of authors. The pioneering work on modeling Ginzburg-Landau vortices is the work of
Bethuel, Brezis and Hélein [8]. In this work the authors suggested to consider a simpli�ed Ginzburg-
Landau model (1), in which the physical source of vortices, the external magnetic �eld, is modeled
via a Dirichlet boundary condition with a positive degree on the boundary. The analysis of full
Ginzburg-Landau functional, with induced and applied magnetic �elds, was later performed by
Sandier and Serfaty in [14].

This work addresses the issue of the existence of local minimizers of (1) in the class of functions
with �semi-sti�� boundary conditions

J := {u ∈ H1(G,C) | |u| = 1 a.e. on ∂G}. (3)

The global minimization problem (1)-(3) gives only trivial constant minimizers, e.g. u ≡ 1. In order
to �nd the critical points of (1) with vortices, it is natural to impose the degrees (winding numbers)
q and p on ∂Ω and ∂ω correspondingly. This leads us to the minimization problem for (1) in the
class

Jpq := {u ∈ J , deg(u, ∂ω) = p, deg(u, ∂Ω) = q} (4)

Here, the topological degree is given by

deg(u, γ) :=
1

2π

∫
γ
u× ∂u

∂τ
dσ (5)

where γ is a smooth closed curve, u ∈ C1(γ,S1) and a× b := i
2(ab̄− bā) for all a, b ∈ C. It is worth

noting that the degree is a well-de�ned integer for u ∈ H1/2(γ,S1) [?].
The minimization problem for (1) in (4) has been studied in [4], [10], [5], [6] [3], [7], [9] and

others. The works [13], [12] and [1] studied the minimization problem for full Ginzburg-Landau
functional (with induced magnetic �eld) in class (4). As observed in [4] and [5], the class Jpq is not
weakly H1 closed since the degree at the boundary may change in the weak H1 limit. Therefore, it
is not di�cult to see ([5] and [7]) that if p 6= q, one can construct an explicit minimizing sequence
for (1) in (4), whose weak H1 limit does not belong to Jpq, which implies that there are no global
minimizers of (1) in (4) for p 6= q.

The case p = q = 1 was studied in [10], [5] and [3]. The existence of vortexless minimizers was
established in su�ciently thin domains. It was also shown in [3] that for su�ciently small ε there
are no global minimizers of (1) in J11 in thick domains.

Due to the lack of weak H1 compactness of Jpq, the question of existence of solutions of (2)
in Jpq is highly nontrivial. The work [7] provided the answer to this question and established the
existence of such solutions for small ε. Moreover, the solutions in [7] are stable in the sense that
they are local minimizers of (1) in J . The work [9] generalized the results in [7] for the case of a
multiply connected domain. The main tool in establishing the stable solutions was the approximate
bulk degree.

De�nition 1. [7] Let u ∈ H1(G,C) and V ∈ C∞(G,R) be a solution to the scalar boundary value
problem 

∆V = 0 in G;

V = 1 on ∂Ω;

V = 0 on ∂ω.

(6)

Then the approximate bulk degree of u in G is the following scalar quantity:

abdeg(u) =
1

2π

∫
G
u× (∂x1V ∂x2u− ∂x2V ∂x1u) dx. (7)
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The key property of abdeg(u) is that, unlike the degree, it is preserved in weak- H1 limits, i.e.
abdeg(un)→ abdeg(u) if un ⇀ u in H1(G), n→∞.

The construction of the solutions of (1) in J was based on the study of the following minimization
problem

mε(p, q, d) := inf{Eε(u); u ∈ J (d)
pq }, (8)

where
J (d)
pq = {u ∈ Jpq; d− 1/2 ≤ abdeg(u) ≤ d+ 1/2}. (9)

The following existence result holds ([7]):

Theorem 1. For any integers p, q and d > 0 (d < 0) with d ≥ max{p, q} (d ≤ min{p, q}) there
exists ε1 = ε1(p, q, d) > 0 such that the in�mum in (8) is always attained, when ε < ε1. Additionally,

each minimizer lies in J (d)
pq with its open neighborhood, therefore, the minimizers in J (d)

pq are distinct
local minimizers in J .

It was conjectured in [7] that the condition d ≥ max{p, q} (d ≤ min{p, q}) is essential and in
the contrary case there is a threshold value ε0 s.t. for ε < ε0 the minimizer in the minimization
problem (8) is not attained. The proof of this conjecture is the main objective of this paper.

Our main results are:

Theorem 2. Let d > 0, d ≤ min{p, q} (or d < 0, d ≥ max{p, q}) and either p 6= d or q 6= d.
Let u be a weak limit of a minimizing sequence for problem (8) (such a minimizing sequence always

exists). Then u 6∈ J (d)
pq when ε is su�ciently small.

Theorem 3. Let u be a weak limit of a minimizing sequence for problem (8) with d = 0 and p, q ∈ Z,
p 6= 0 or q 6= 0. Then u 6∈ J (d)

pq when ε is su�ciently small.

Theorems 2 and 3 provide the necessary conditions for the existence of GL minimizers by impos-
ing natural restrictions on the bulk degrees of stable GL solutions. These results also complement
the Theorem 1 in the sense that they show that the conditions d > 0 (d < 0) with d ≥ max{p, q}
(d ≤ min{p, q}) are essential rather than technical.

Theorem 3 is a generalization of the main result of [3], which was proved for p = q = 1. The main

idea of Theorem 3 may be summarized as follows. We assume that the minimizer uε ∈ J (0)
pq exists.

Then, by a clever choice of test functions we may conclude that Eε[uε] ≤ π(|p|+ |q|). Furthermore,
certain properties of GL minimizers with zero bulk degree, such as Proposition 4, enable us to
construct an auxiliary quadratic functional Sε s.t.

Eε[uε] ≥ Sε[uε] :=
1

2

∫
G
|∇uε|2 +

1

2

∫
Gδ

[
1

ε2
(Re(uε)− 1)2 − ε2(Im(uε))

2

]
for some Gδ ⊂⊂ G. Minimization of the quadratic functional Sε in J (0)

pq leads to linear Euler-
Lagrange equations, which may be solved explicitly using the separation of variables and Fourier
series. This enables us to establish that Sε[uε] > π(|p| + |q|) and we arrive at contradiction with
the existing upper bound.

In order to prove Theorem 2, we again assume that the minimizer uε ∈ J (d)
pq exists. The above

approach, however, cannot be extended to the proof of Theorem 2, because if d 6= 0 the estimates
of Proposition 4 are no longer valid. Therefore, we use a variant of Substitution Lemma due to

Lassoued and Mironescu [11]. For u ∈ J (d)
pq we write u = u(d)v, where u(d) is a minimizer of Eε in

J (d)
d,d (its existence was established in [7]) and vε ∈ J (0)

p−d,q−d. Then

Eε[uε] = Eε[u
(d)] +Mε[vε] +

1

ε2

∫
G
|u(d)|4(1− |vε|2)2
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where

Mε[v] ≈ 1

2

∫
G
|∇v|2 + πabdeg(v) (10)

The minimization problem for Mε[v] in J (0)
p−d,q−d requires subtle techniques of estimating Fourier

coe�cients, which are essentially di�erent from the ones in [3]. The derivation of the sharp lower
bounds for the problems of type (10), based on the estimates of Fourier coe�cients, is the main
technical novelty of the present work. We establish that, for su�ciently small ε, Mε[v] > π(|p −
d| + |q − d|) for all v ∈ J (0)

p−d,q−d. This contradicts the existing upper bound inf
v∈J (0)

p−d,q−d
Mε[v] ≤

π(|p−d|+|q−d|), which may be obtained by a thorough choice of a test function, and thus completes
the proof of Theorem 2.

2 Proof of Theorem 2: Energy decomposition

Without loss of generality, let d > 0, and the integers p and q are such that p > d and q ≥ d.
Consider the auxiliary minimization problem

I0(d,G) := inf{
∫
G
|∇u|2dx; u ∈ H1(G; S1), deg(u, ∂ω) = deg(u, ∂Ω) = d} (11)

Proposition 1. [8] There exists a unique (up to multiplication by constants with unit modulus)
solution u∞ of the minimization problem (11), and u∞ is a regular harmonic map in G (i.e.
−∆u∞ = u∞|∇u∞|2 in G, u∞ ∈ H1(G)) satisfying u∞ × ∂u∞

∂ν = 0 on ∂G.

Let u(d) = u
(d)
ε be a minimizer of 1 in J (d)

d,d (its existence is established in [7], Lemma 19).

Lemma 1. There exists αε ∈ S1 s.t.

αεu
(d) → u∞, ε→ 0 (12)

in C1,β(Ḡ), β < 1, where u∞ is a minimizer of (11).

Lemma 1 was proved in [5], Corollary 8.2 for d = 1, its proof may be easily adapted for an
arbitrary d. This Lemma implies that the minimizer u(d) is vortexless for su�ciently small ε. Thus
we can write u(d) = ρeidθ, where ρ, eiθ and ∇θ are smooth maps de�ned globally on G. Following
[7], we introduce the change of coordinates

Ψ : (x, y)→ (h, θ) in Ḡ, (13)

where θ solves {
div(ρ2∇θ) = 0 in G;
∂θ
∂ν = 0 on ∂G,

(14)

and h solves {
∇⊥h = (u(d) × ∂x1u(d), u(d) × ∂x2u(d)) in G;

h = 0 on ∂Ω.
(15)

Note that it follows from (15) that
∇h = −dρ2∇⊥θ. (16)

The problem (15) has a unique solution h (see [7], Lemma 7). Moreover, h is constant on ∂ω and

hε := h(∂ω) = −2π
abdeg(u)

cap(G)
(17)
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where abdeg(u) is given by (7) and

cap(G) :=

∫
G
|∇V |2dx, V solves (6)

is H1 - capacity (�measure of thickness�) of G. For example, if G = BR(0)\Br(0), cap(G) = 2π
ln(R/r) .

Lemma 2. The map Ψ, given by (13), is a C1 di�eomorphism on Ḡ.

Proof. It follows from [5], Lemma 4.4, that u(d) ∈ C∞(Ḡ). Therefore ρ and ∇θ ∈ C∞(Ḡ), and due
to (16), ∇h ∈ C∞(Ḡ). It remains to show that Jac(Ψ) 6= 0 in Ḡ. Using (16),

Jac(Ψ) = dρ2|∇θ|2 (18)

On the other hand, by Lemma 1, we have d2ρ2|∇θ|2 → |∇θ∞|2 in C(Ḡ) as ε→ 0, where u∞ = eiθ∞

minimizes (11). Note that θ∞ solves
∆θ∞ = 0 in G;
∂θ∞
∂ν = 0 on ∂G;∫
∂Ω

∂θ∞
∂τ ds =

∫
∂ω

∂θ∞
∂τ ds = d.

(19)

Let F : G → B be a conformal map between G and an annulus B := B1(0) \ Br(0), and ũ = eiθ̃∞

be the minimizer of (11) in B. The equation (19) in B admits an explicit multivalued solution

θ̃∞ = arg
(
zd

|z|d

)
. The conformal invariance of the Dirichlet integral implies the following relation

|∇θ̃∞(z)|2 = |∇θ∞(F−1(z))|2|∇F−1(z)|2, z ∈ B,

and thus |∇θ∞(F−1(z))|2 6= 0, z ∈ B. It follows from (18) that Jac(Ψ) 6= 0 in Ḡ, which yields the
desired result.

We now proceed with an energy decomposition for Eε. For any w̃ ∈ J (d)
p,q , write w̃ = ρw,

w ∈ J (d)
p,q . By Lemma 21 [7], we have

Eε[w̃] = Eε[u
(d)] +Hε[w], (20)

where

Hε[w] :=
1

2

∫
G
ρ2|∇w|2dx− d2

2

∫
G
|∇θ|2ρ2|w|2dx+

1

4ε2

∫
G
ρ4(|w|2 − 1)2dx. (21)

We proceed further by factoring w ∈ J (d)
p,q as w = eidθv, v = v1 + iv2 ∈ J (0)

p−d,q−d (such represen-

tation is clearly valid for any w ∈ J (d)
p,q ).

Hε[w] ≡ Fε[v] :=
1

2

∫
G
ρ2|∇v|2 + d

∫
G
ρ2(v1∇v2 · ∇θ − v2∇v1 · ∇θ) +

1

4ε2

∫
G
ρ4(1− |v|2)2 (22)

The following proposition is crucial in establishing Theorem 2.

Proposition 2. Fix ε > 0 and assume Fε[v] > π((p− d) + (q − d)) for any v ∈ J (0)
p−d,q−d. Then

inf
v∈J (0)

p−d,q−d

Fε[v] (23)

is not attained.
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Proof. To simplify the presentation, assume p > q and q = d (the general case is treated analo-

gously). By, contradiction, assume v∗ ∈ J (0)
p−d,0 is a minimizer of (23). Then

Fε[v
∗] = π(p− d) + δ (24)

for some δ > 0. On the other hand, we are going to explicitly construct a test function η ∈ J (0)
p−d,0

s.t.

Fε[η] ≤ π(p− d) +
δ

2
(25)

which would contradict the minimality of v∗. Let F : G→ B1(0) \Br(0) be a �xed conformal map
as in Lemma 2. For ξ ∈ G de�ne

a(z, ξ) :=

(
F(ξ)−F(z)

1−F(ξ)F(z)

)p−d
Note that

a(z, ξ)→w 1 in H1(G) as ξ → ∂Ω and a(z, ξ)→ 1 in C∞(K) for any compact K ⊂ (G ∪ ∂ω).
(26)

However, a(z, ξ) /∈ J (0)
p−d,0 because |a(z, ξ)| 6= 1 for z ∈ ∂ω. We �rst modify a in order to have

constant modulus on ∂ω (see [12]). Consider

γ(z, ξ) := a(z, ξ)efξ(z)+igξ(z)

where the real-valued function fξ satis�es
∆f = 0 in G;

f = 0 on ∂Ω;

f = cξ − ln |a(z, ξ)| on ∂ω, cξ − constant;∫
∂ω

∂f
∂ν ds = 0

(27)

and gξ is a single-valued harmonic conjugate of fξ (which exists due to the last condition in (27)).
The resulting function γ(z, ξ) is analytic in G and satis�es |γ| = 1 on ∂Ω and |γ| = ecξ on ∂ω. We
may now de�ne

η(z, ξ) := γ(z, ξ)b(z, ξ) ∈ J (0)
p−d,0 (28)

where b(z, ξ) = (e−cξ − 1)(1 − V (z)) + 1 and V solves (6). It follows from (27) that cξ → 0 as
ξ → ∂Ω, thus b(z, ξ)→ 1 in C∞(Ḡ), ξ → ∂Ω. Thus, η satis�es (26) as well.

In order to proceed, rewrite F using the pointwise identities

1

2
|∇v|2 ≡ Jacv + 2

∣∣∣∣dvdz̄
∣∣∣∣2 = div(v × vx2 , vx1 × v) + 2

∣∣∣∣dvdz̄
∣∣∣∣2 , v ∈ J (0)

p−d,0 (29)

and

ρ2div(v × vx2 , vx1 × v) = div(ρ2v × vx2 , ρ2vx1 × v)− ∂ρ2

∂x1
v × vx2 −

∂ρ2

∂x2
vx1 × v (30)

Integrating by parts and using (29) and (30), we get

1

2

∫
G
ρ2|∇v|2 dx = π(p− d)− 1

2

∫
G

(
∂ρ2

∂x1
v × vx2 +

∂ρ2

∂x2
vx1 × v

)
+ 2

∫
G
ρ2

∣∣∣∣dvdz̄
∣∣∣∣2 (31)

Using (31), (22) can be rewritten as

Fε[η(z, ξ)] = π(p− d) +Rε[η(z, ξ)] (32)
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where Rε[η(z, ξ)]→ 0 as ξ → ∂Ω due to (26) and∣∣∣∣dη(z, ξ)

dz̄

∣∣∣∣2 = |γ(z, ξ)|2
∣∣∣∣db(z, ξ)dz̄

∣∣∣∣2
Therefore, we can choose ξ su�ciently close to ∂Ω so that (25) holds. Contradiction.

3 Model problem.

Performing the change of variables Ψ in (21) and (22) ([7], Proposition 20), we get

Hε[w] =
d

2

∫ 2π

0

∫ 0

hε

|∂hw|2ρ4dhdθ+

+
1

2d

∫ 2π

0

∫ 0

hε

(|∂θw|2 − d2|w|2)dhdθ +
1

4ε2

∫ 2π

0

∫ 0

hε

ρ2(|w|2 − 1)2 dhdθ

d|∇θ|2
. (33)

and

Fε[v] =
d

2

∫ 2π

0

∫ 0

hε

|∂hv|2ρ4dhdθ +
1

2d

∫ 2π

0

∫ 0

hε

|∂θv|2dhdθ+

+
i

2

∫ 2π

0

∫ 0

hε

(
v∂θv − v∂θv

)
dhdθ +

1

4ε2

∫ 2π

0

∫ 0

hε

ρ2(|v|2 − 1)2 dhdθ

d|∇θ|2
. (34)

where hε is given by (17) and, using the properties of abdeg ([7]), hε → h0 := −2π d
cap(G) .

Proof for Theorem 2. As in Proposition 2, we assume p > d and q = d, the general case is
treated in Section 3.2. We argue by contradiction. Assume inf

v∈J (0)
p−d,0

Fε[v] is attained for some

v∗ε ∈ J
(0)
p−d,0. In view of Proposition 2,

Fε[v
∗
ε ] = inf

v∈J (0)
p−d,0

Fε[v] ≤ π(p− d) (35)

On the other hand,
Fε[v

∗
ε ] ≥ inf

v∈Kε
Fε[v] (36)

where

Kε := {v ∈ H1(G), v = v∗ε on ∂Ω,−1

2
< abdeg(v,G) <

1

2
,
∂v

∂ν
= 0 on ∂ω}, (37)

since v∗ε minimizes Fε with respect to its own boundary condition on ∂Ω, while the more restrictive
condition |v| = 1,deg(v, ∂ω) = 0 on ∂ω is replaced with the Neumann boundary condition ∂v

∂ν = 0
on ∂ω which arises naturally from minimization and thus poses no additional restrictions. The
strategy of the proof will be as follows. For su�ciently thin domains and q = d, we will consider
a the minimizations problem for a simpli�ed quadratic functional M , obtained essentially from the
�rst three terms in (34). This will enable us to obtain the key estimate

Fε[v
∗
ε ] ≥ inf

v∈Kε
Mε[v] > π(p− d) (38)

which leads to contradiction with Proposition 2 and thus completes the proof of Theorem 2. Finally,
we will generalize this result for domains of arbitrary thickness and q ≥ d.
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3.1 Model problem in thin domains

Assume that the domain G is su�ciently thin, i.e. cap(G) ≥ c0 for su�ciently large c0. It
follows from Lemma 1 that ρ→ 1 in C1(Ḡ). Thus there exists cε > 0, cε → 0 such that

ρ4 ≥ ecεh, h ∈ [hε, 0]. (39)

Consider a simpli�ed quadratic functional Mε, which essentially contains the �rst three terms in
(34):

Mε[v] = Mε[v,G] :=
d

2

∫ 2π

0

∫ 0

hε

|∂hv|2ecεhdhdθ+
1

2d

∫ 2π

0

∫ 0

hε

|∂θv|2dhdθ+
i

2

∫ 2π

0

∫ 0

hε

(
v∂θv − v∂θv

)
dhdθ

(40)
Clearly, due to (39), Fε[v] ≥ Mε[v] for any v ∈ Kε. The minimization problem for Mε in Kε plays
an important role in the further analysis and is called the model problem.

The function v∗ε = v∗ = v∗(h, θ), de�ned in (35) is 2π periodic in θ. Thus we can present it as
Fourier series

v∗(0, θ) =
∞∑

k=−∞
αke

ikθ,

where αk = αk(ε) ∈ C are ε - dependent.

Lemma 3. (Properties of αk). The coe�cients αk satisfy

(i)
∞∑

k=−∞
k|αk|2 = p− d; (41)

(ii)
∞∑

k=−∞
αkαk+n =

{
1, if n = 0;

0, if n 6= 0.
(42)

(iii) Up to a subsequence εn, still denoted ε,{
|α0| → 1

|αk| → 0, k 6= 0
as ε→ 0 (43)

Proof. (i) follows from the degree formula

deg(v, ∂Ω) =
1

2πi

∫
∂Ω
v̄
∂v

∂τ
, (44)

valid for v ∈ C1(∂Ω, S1).
In order to get (ii), observe that v∗(0, θ)v∗(0, θ) = |v∗(0, θ)|2 ≡ 1. Therefore, for n ∈ Z,

1

2π

∫ 2π

0
v∗(0, θ)v∗(0, θ)einθ dθ =

∞∑
k=−∞

αkαk+n =

{
1, if n = 0;

0, if n 6= 0.

Let us show (iii). Arguing as in the proof of Theorem 4 [7], we conclude that uε ⇀ u∞ in H1(G)
where u∞ minimizes (11). On the other hand, uε = ρeidθv∗ε = u(d)v∗ε , while, by Lemma 1, αεu

(d) →
u∞, ε → 0 in C1,β(G). Furthermore, without loss of generality we may assume that up to a
subsequence aε → 1 ∈ S1. Thus, up to passing to a further subsequence, v∗ε ⇀ 1 in H1(G). By
trace theorem, v∗ε ⇀ 1 in H1/2(∂Ω), and (43) follows.
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We look for minimizers v(h, θ) of (40) in (37) also in form of Fourier series

vε(h, θ) =

∞∑
k=−∞

αkf
ε
k(h)eikθ (45)

where αk ∈ C and f εk ∈ C∞([hε, 0],C) s.t. f εk(0) = 1. The expression for M thus becomes

Mε[v] = π
∞∑

k=−∞
|αk|2

∫ 0

hε

[
d|f ′k(h)|2ecεh +

(
k2

d
+ 2k

)
|fk(h)|2

]
dh (46)

Lemma 4. Let

mε
k := inf

{∫ 0

hε

[
d|f ′k(h)|2ecεh +

(
k2

d
+ 2k

)
|fk(h)|2

]
dh; fk(0) = 1, f

′
k(hε) = 0

}
Then

mε
k ≥ m̂k + oε(1)

where

m̂k := inf

{∫ 0

h0

[
d|f ′k(h)|2 +

(
k2

d
+ 2k

)
|fk(h)|2

]
dh; fk(0) = 1, f

′
k(h0) = 0

}
(47)

and h0 := limε→0 hε.

Proof. Clearly
mε
k ≥ m̂ε

k + oε(1) (48)

where

m̂ε
k := inf

{∫ 0

hε

[
d|f ′k(h)|2ecεh +

(
k2

d
+ 2k

)
|fk(h)|2

]
dh; fk(0) = 1, f

′
k(h0) = 0

}
(49)

Minimizing (49) and (47) leads to the following problems
−d
(
f εk
′
(h)ecεh

)′
+
(
k2

d + 2k
)
f εk(h) = 0;

f εk(0) = 1;

f ε
′
k(h0) = 0.

(50)

and 
−df ′′k (h) +

(
k2

d + 2k
)
fk(h) = 0;

fk(0) = 1;

f
′
k(h0) = 0.

(51)

correspondingly. Furthermore, multiplying (50) and (51) by f εk and fk respectively and integrating
by parts, we get

m̂ε
k =

∫ 0

h0

[
d|f ′k(h)|2ecεh +

(
k2

d
+ 2k

)
|fk(h)|2

]
dh = df εk

′
(0)fk(0) = df εk

′
(0) (52)

and similarly
m̂k = dfk

′
(0) (53)

Denoting f εk
′

= gεk, the equation (50) becomes{
f εk
′

= gεk;

dgεk
′

= −dgεk +
(
k2

d + 2k
)
e−cεhf εk(h).

(54)
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By Theorem 7.2 [2], the solutions of the regularly perturbed system (54) converge to the solutions
of the limiting system {

f
′
k = gk;

dgk
′

= −dgk +
(
k2

d + 2k
)
fk(h).

uniformly on [h0, 0]. In view of (52), (53), m̂ε
k = m̂k + oε(1), which, in conjunction with (48),

concludes Lemma 4.

Lemma 5. Assume αk and fk are given by (45). Then ∃h∗0 < 0 s.t. for any h∗0 < h0 < 0 and for
su�ciently small ε we have

πd

∞∑
k=−∞

f
′
k(0)|αk|2 > π

∞∑
k=−∞

k|αk|2 (55)

Lemma 5 plays the crucial role in the proof of Theorem 2. In view of Lemma 4, (52) and the
degree formula (41), the inequality (55) implies (38) and thus completes the proof of Theorem 2 for
q = d in thin domains.

Proof. (Lemma 5) We start with solving (50) in three di�erent cases depending on the relation
between k and d:

Case I. k = 0 or k = −2d.
Trivial constant solution fk(h) ≡ 1.

Case II. k 6= 0,−1, · · · ,−2d.

fk(h) =
e−2λ2h0eλ2h + e−λ2h

1 + e−2λ2h0
, λ2 =

√
k2

d2
+

2k

d
(56)

Furthermore,

df
′
k(0) =

√
k2 + 2kd

(
1− e2λ2h0

1 + e2λ2h0

)
(57)

Case III. k = −1, · · · ,−2d+ 1.

fk(h) = tanλ3h0 sinλ3h+ cosλ3h, λ3 =

√
−k

2

d2
− 2k

d
(58)

Similarly to the previous case, we have

df
′
k(0) =

√
−k2 − 2kd tan(h0λ3). (59)

The following Lemma plays an important role in the proof of Lemma 5.

Lemma 6. Fix an arbitrary natural number k0 ≥ 2d. Then for any n = 1, . . . , k0 there exist two
constants C = C(k0, n) > 0 and cε > 0 such that cε → 1 as ε→ 0 and for su�ciently small ε

|α−n| ≤ cε|αn|+ C
∑

k≤−k0,k≥1

|αk|2. (60)
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Proof. It follows from (42) with n = 1 that

|α−1||α0| ≤ |α1||α0|+
∑
|k|≥1

|αk|2. (61)

Rewriting (61) as

|α−1|(|α0| − |α1|) ≤ |α1||α0|+
∑

k≥1,k≤−2

|αk|2

and using the convergence (43) we conclude that

|α−1| ≤ c1
ε|α1|+ C1

∑
k≥1,k≤−2

|αk|2 (62)

with c1
ε → 1 as ε→ 0 and C1 independent of ε.

We proceed with using the orthogonality property (42) for n = 2, which yields

|α−2|(|α0| − |α−4|) ≤ |α2||α0|+ |α−1|2 + C̃2

∑
k≥1,k≤−3

|αk|2 (63)

Applying the estimate (62) and making use of the convergence properties of coe�cients (43), we
obtain

|α−2| ≤ c2
ε|α2|+ C2

∑
k≥1,k≤−3

|αk|2 (64)

with c2
ε → 1 as ε→ 0 and C2 independent of ε. The estimate (68) allows us to improve the estimate

(62) to

|α−1| ≤ c1
ε|α1|+ C1

∑
k≥1,k≤−3

|αk|2 (65)

(with possibly di�erent C1). Now, once more we make use of the orthogonality property (42) for
n = 3, which, together with the estimates (68) and (67), yields

|α−3| ≤ c3
ε|α3|+ C3

∑
k≥1,k≤−4

|αk|2 (66)

where c3
ε → 1 as ε → 1 and C3 independent of ε. The estimate (66), in turn, may be used to

improve the estimates (67) and (68):

|α−1| ≤ c1
ε|α1|+ C1

∑
k≥1,k≤−4

|αk|2 (67)

and
|α−2| ≤ c2

ε|α2|+ C2

∑
k≥1,k≤−4

|αk|2. (68)

Repeating the above procedure k0 times, we arrive at the estimate (60).

We now return to the proof of Lemma 5. It follows from (68) that one can �nd some h∗0 < 0
such that for h0 ∈ (h∗0, 0) we have

df
′
k(0)− k ≥ 0, ∀k ≥ 1. (69)

For large values of k the inequality (69) can be improved, namely, ∃k0 ≥ 2d, depending only on h0

and d, s.t. for |k| ≥ k0

df
′
k(0)− k ≥ d

4
(70)
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The inequality (70) trivially holds for k ≤ −k0, while for k ≥ k0 is follows from the elementary
inequality

√
k2 + 2kd ≥ k(1 + d

2k ), which is true for su�ciently large k. Introduce

I1 :=

k0∑
k=1

|αk|2

and
I2 :=

∑
|k|>k0

|αk|2.

In view of (70)
∞∑

k=−∞
(df

′
k(0)− k)|αk|2 ≥

∑
|k|≤k0

(df
′
k(0)− k)|αk|2 +

d

4
I2. (71)

Applying Lemma 6 and (69), we obtain the following estimate of the �rst sum in (71)

∑
|k|≤k0

(df
′
k(0)− k)|αk|2 =

k0∑
k=1

[(df
′
k(0)− k)|αk|2 + (df

′
−k(0) + k)|α−k|2] =

=
1

2d+ 1

k0∑
k=1

df
′
k(0)|αk|2 +

k0∑
k=1

[
2d2

2d+ 1
f
′
k(0)− k)|αk|2 + (df

′
−k(0) + k)|α−k|2] ≥

≥ 1

2d+ 1
I1 +

k0∑
k=1

[(
2d2

2d+ 1
f
′
k(0) + df

′
−k(0))|α−k|2] + I3 (72)

where, due to (43),

I3 := C1

k0∑
k=1

|α−k|
∑

m≥1,m≤−k0

|αm|2 + C2

 ∑
m≥1,m≤−k0

|αm|2
2

= o(I1 + I2), ε→ 0. (73)

It remains to obtain a lower bound for 2d2

2d+1f
′
k(0) + df

′
−k(0) for 1 ≤ k ≤ k0. Clearly, 2d2

2d+1f
′
k(0) +

df
′
−k(0) > 0 for k ≥ 2d. Moreover, the explicit expressions (57) and (59) yield that for all 1 ≤ k ≤

2d− 1

∂

∂h0

(
2d2

2d+ 1
f
′
k(0) + df

′
−k(0)

)
h0=0

=
1

d

[
2d

2d+ 1
(−k2 − 2kd) + (2kd− k2)

]
< 0

The latter inequality guarantees that for 0 > h0 > h∗0 su�ciently small

k0∑
k=1

[(
2d2

2d+ 1
f
′
k(0) + df

′
−k(0))|α−k|2] ≥ 0 (74)

Finally, it follows from (71), (72), (73) and (74) that for 0 > h0 > h∗0

∞∑
k=−∞

(df
′
k(0)− k)|αk|2 ≥

1

2d+ 1
I1 +

d

4
I2 +

k0∑
k=1

[(
2d2

2d+ 1
f
′
k(0) + df

′
−k(0))|α−k|2] + o(I1 + I2) > 0

for su�ciently small ε. This completes the proof of Lemma 5.
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3.2 Model problem in general case.

Let p > d, q ≥ d and the capacity of the domain G is arbitrary.

Assume inf
v∈J (0)

p−d,q−d
Fε[v] is attained for some v∗ε ∈ J

(0)
p−d,q−d. In view of Proposition 2,

Fε[v
∗
ε ] = inf

v∈J (0)
p−d,q−d

Fε[v] ≤ π(|p− d|+ |q − d|) (75)

Consider the minimization problem for the functional

Wε[v] = Wε[v,G] :=
d

2

∫ 2π

0

∫ 0

h0

|∂hv|2dhdθ +
1

2d

∫ 2π

0

∫ 0

h0

|∂θv|2dhdθ+

+
i

2

∫ 2π

0

∫ 0

h0

(
v∂θv − v∂θv

)
dhdθ +

1

4ε2

∫ 2π

0

∫ 0

h0

ρ2(|v|2 − 1)2 dhdθ

d|∇θ|2
(76)

in the class J (0)
p−d,q−d(G), h0 = − 2πd

cap(G) .

(i) If h0 > 2h∗0, consider a closed simple curve L which lies within G so that ω ⊂ int(G). Then
G = G1 ∪G2, where G1 := Ω \ int(L) and G2 := int(L) \ ω. Moreover, we can always choose L so
that h1 := − 2πd

cap(G1) > h∗0 and h2 := − 2πd
cap(G2) > h∗0. Then

inf
v∈J (0)

p−d,0

Wε[v,G] ≥ inf
v1∈K1

M [v1, G1] + inf
v2∈K2

M [v2, G2]

where M [vi, Gi], i = 1, 2 is given by (40) and

K1 := {u ∈ H1(G,C), |u| = 1 on ∂Ω,deg(u, ∂Ω) = p− d,−1

4
< abdeg(u,G1) <

1

4
,
∂u

∂ν
= 0 on L}.

K2 := {u ∈ H1(G,C), |u| = 1 on ∂ω, deg(u, ∂ω) = q − d,−1

4
< abdeg(u,G2) <

1

4
,
∂u

∂ν
= 0 on L}.

Consequently, by the main result of Section 3.1, inf
v∈J (0)

p−d,q−d
Wε[v,G] > π(|p− d|+ |q − d|).

(ii) If 2h∗0 > h0, split G into three disjoint domains G = G1∪G2∪G3. The domain G1 = Ω\ int(L1),

where L1 is a closed simple curve which lies within G and is such that h
(1)
0 := − 2πd

cap(G1) > h∗0.

Similarly, we can choose another closed simple curve L2 and de�ne G2 := int(L2) \ ω so that

h
(2)
0 := − 2πd

cap(G2) > h∗0. Finally, set G3 := G \ (G1 ∪ G2). By contradiction, assume there exists

v∗ ∈ J (0)
p−d,0(G) s.t. Wε[v

∗, G] < π(p − d). On the other hand, arguing as in (i) we can obtain the
following lower bound on Wε[v

∗, G]:

Wε[v
∗, G] =

3∑
i=1

Wε[v
∗, Gi] > π(|p− d|+ |q − d|) +Wε[v

∗, G3]

Thus, in order to obtain contradiction, it su�ces to establish that

Wε[v
∗, G3] =

d

2

∫ 2π

0

∫ h
(2)
0

h0−h(1)0

|∂hv∗|2dhdθ +
1

2d

∫ 2π

0

∫ h
(2)
0

h0−h(1)0

|∂θv∗|2dhdθ+

+
i

2

∫ 2π

0

∫ h
(2)
0

h0−h(1)0

(
v∗∂θv∗ − v∗∂θv∗

)
dhdθ +

1

4ε2

∫ 2π

0

∫ h
(2)
0

h0−h(1)0

ρ2(|v∗|2 − 1)2 dhdθ

d|∇θ|2
≥ 0 (77)

Using Lemma 6 [5] we may conclude that v∗ is vortexless away from the boundary ∂G, in particular,
in G3. Moreover,

deg(
v∗

|v∗|
,L1) = deg(

v∗

|v∗|
,L2) = 0 (78)
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Hence, writing v∗ = |v∗|eiψ, we get

i

2

∫ 2π

0

∫ h
(2)
0

h0−h(1)0

(
v∗∂θv∗ − v∗∂θv∗

)
=

1

2

∫ 2π

0

∫ h
(2)
0

h0−h(1)0

|v∗|2dψ
dθ

=
1

2

∫ 2π

0

∫ h
(2)
0

h0−h(1)0

(|v∗|2 − 1)
dψ

dθ
(79)

since
∫ 2π

0

∫ h(2)0

h0−h(1)0

dψ
dθ = 0 due to (78). By Cauchy-Schwartz

∣∣∣∣∣
∫ 2π

0

∫ h
(2)
0

h0−h(1)0

(
v∗∂θv∗ − v∗∂θv∗

)∣∣∣∣∣ ≤ δ
∫ 2π

0

∫ h
(2)
0

h0−h(1)0

∣∣∣∣dψdθ
∣∣∣∣2 +

1

δ

∫ 2π

0

∫ h
(2)
0

h0−h(1)0

(|v∗|2 − 1)2

for any δ > 0. Thus,

Wε[v
∗, G3] ≥ d

2

∫ 2π

0

∫ h
(2)
0

h0−h(1)0

|∂hv∗|2dhdθ +

∫ 2π

0

∫ h
(2)
0

h0−h(1)0

(
1

2d
− 2δ

)
|∂θv∗|2dhdθ+

+

∫ 2π

0

∫ h
(2)
0

h0−h(1)0

(
1

4ε2

ρ2

d|∇θ|2
− 1

2δ

)
(|v∗|2 − 1)2dhdθ ≥ 0 (80)

for su�ciently small δ. Thus, we showed that, for su�ciently small ε, Wε[v,G] > π(|p−d|+ |q−d|)
for any v ∈ J (0)

p−d,q−d. Similarly to Section 3.1 (i.e. Lemma 4) we can show that the same is true
for Fε, i.e. Fε[v

∗
ε ] > π(|p − d| + |q − d|). The obtained inequality contradicts Proposition 2 and

concludes the proof of Theorem 2.

4 Proof of Theorem 3.

In this section we consider the minimization problem for (1) in J (0)
p,q for an arbitrary integers

p and q. The approach to proving the Theorem 3 is essentially di�erent from the one used in the
proof of Theorem 2. The reason that the decomposition (20) is no longer valid. Instead, we will
follow closely the strategy, described in ([3]). We start with the following preliminary results.

Proposition 3. For any ε > 0,

mp,q := inf
u∈J (0)

p,q

Eε[u] ≤ π(|p|+ |q|)

Proposition 4. Let uε be a solution of Ginzburg-Landau equation (2) such that Eε[uε] < π(|p| +
|q|) + e−1/ε. Then there exists γε = const ∈ S1 such that for any compact set K in G

‖uε − γε‖Cl(K) = o(εm), as ε→ 0, ∀m > 0, l ∈ N (81)∫
G

(|uε|2 − 1)2 dx = o(εm), as ε→ 0, ∀m > 0. (82)

The propositions 3 and 4 were proved for p = q = 1 in [5]. These proofs can be modi�ed for
arbitrary integers p and q in a straightforward way.

Proof. (Theorem 3) By contradiction, assume that inf
u∈J (0)

p,q
Eε[u] = Eε[uε] for some uε ∈ J (0)

p,q . We

are going to construct a lower bound on Eε[uε], which would contradict Proposition 3. We will
follow closely the strategy of [3]. For convenience, the proof will be split into several steps.
Step 1. Conformal equivalence to a circular annulus.
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Proposition 5. [3] Suppose G is such that mp,q is attained. Then the same holds for B = BR1(0)\
BR2(0) with R1 and R2 satisfying cap(G) = 2π

ln(R1/R2) .

Step 2. Construction of the model problem. Let Rm = R1−R2
2 . We split the domain B as

B = Bext ∪ Bint, where Bext := BR1(0) \ BRm(0), Bint := BRm(0) \ BR2(0). Following [3], we can
obtain the lower bound in Bext:

Eε[uε, Bext] ≥ inf
w∈K1

ε

S(1)
ε [w] (83)

where

K1
ε = {w ∈ H1(Bext), w = uε on ∂BR1(0),

∂w

∂ν
= 0 on ∂BRm(0)} (84)

and

S(1)
ε [w] :=

1

2

∫ R1

Rm

dr

∫ 2π

0
|∇w|2 dφ+

∫ ρ1

Rm

dr

∫ 2π

0
dφ

(
1

2ε2
(Re(w)− 1)2 − 2ε2(Im(w))2

)
(85)

for some ρ1 ∈ (Rm, R1). A similar lower bound holds in Bint:

Eε[uε, Bint] ≥ inf
w∈K2

ε

S(2)
ε [w] (86)

where

K2
ε = {w ∈ H1(Bint), w = uε on ∂BR2(0),

∂w

∂ν
= 0 on ∂BRm(0)}

and

S(2)
ε [w] :=

1

2

∫ Rm

R2

dr

∫ 2π

0
|∇w|2 dφ+

∫ Rm

ρ2

dr

∫ 2π

0
dφ

(
1

2ε2
(Re(w)− 1)2 − 2ε2(Im(w))2

)
for some ρ1 ∈ (R2, Rm).
Step 3 (Analysis of the model problem). We proceed with analyzing the model problem (84) -
(85). Since Sε[w] ≡ Sε[w], without loss of generality we may assume p > 0 (the case p < 0 may
be addressed in the same way by taking the complex conjugation). We may expand 2π - periodic
minimizer uε at r = R1 as

uε(R1, φ) = a0 +
∞∑
n=1

(an cosnφ+ bn sinnφ)

It follows from the degree formula (44) that

p =
∞∑
n=1

n[Re(an)Im(bn)−Re(bn)Im(an)] (87)

Let w be the minimizer of (85) in (84). Then w satis�es
−∆Re(w) + 1

ε2
V (r)(Re(w)− 1) = 0, R1 < r < Rm,

−∆Im(w)− ε2V (r)Im(w) = 0, R1 < r < Rm,

w(r, φ) = w(r, φ+ 2π),

w = uε for r = R1; ∂w∂r = 0 for r = Rm.

(88)

Here V (r) = 1 when r ∈ (Rm, ρ1) and V (r) = 0 otherwise. We look for solutions of (88) in the form

wε(r, φ) = 1 + (a0 − 1)w
(1)
0 (r) +

∞∑
n=1

w(1)
n (r)(Re(an) cosnφ+Re(bn) sinnφ)
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+i
∞∑
n=1

w(2)
n (r)(Im(an) cosnφ+ Im(bn) sinnφ)

In a similar way to ([3]) we conclude that a0 ∈ R and that

S(1)
ε [wε] = P0 + π

∞∑
n=1

n[Pn(|Re(an)|2 + |Re(bn)|2) +Qn(|Im(an)|2 + |Im(bn)|2)] (89)

Here P0 ≥ 0, nPn = d
drw

(1)
n (R1) and nQn = d

drw
(2)
n (R1). The functions w

(1)
n and w

(2)
n satisfy

− d2

dr2
w

(1)
n (r) + (n2 + 1

ε2
V (r))w

(1)
n (r) = 0, Rm < r < R1;

w
(1)
n (R1) = 1;
d
drw

(1)
n (Rm) = 0.

(90)

and 
− d2

dr2
w

(2)
n (r) + (n2 − ε2V (r))w

(2)
n (r) = 0, Rm < r < R1;

w
(2)
n (R1) = 1;
d
drw

(2)
n (Rm) = 0.

(91)

Solving (90) and (91), denoting ρ := R1 − ρ1 and h := R2−R1
2 , we obtain

Pn = 1− 2e−2nρα
(1)
n

β
(1)
n

where

α(1)
n = e

−ρ
√
n2+ 1

ε2

(
n−

√
n2 +

1

ε2

)
+ e

(−2h+ρ)
√
n2+ 1

ε2
ρ

(
n+

√
n2 +

1

ε2

)
and

β(1)
n = e

−ρ
√
n2+ 1

ε2

(
n+

√
n2 +

1

ε2

)
+ e

(−2h+ρ)
√
n2+ 1

ε2
ρ

(
n−

√
n2 +

1

ε2

)

+e
−ρ
(√

n2+ 1
ε2

+2n
)(

n−
√
n2 +

1

ε2

)
+ e

(−2h+ρ)
√
n2+ 1

ε2
−2nρ

(
n+

√
n2 +

1

ε2

)
Similarly,

Qn = 1− 2e−2nρα
(2)
n

β
(2)
n

where
α(2)
n = e−ρ

√
n2−ε2

(
n−

√
n2 − ε2

)
+ e(−2h+ρ)

√
n2−ε2ρ

(
n+

√
n2 − ε2

)
and

β(2)
n = e−ρ

√
n2−ε2

(
n+

√
n2 − ε2

)
+ e(−2h+ρ)

√
n2−ε2ρ

(
n−

√
n2 − ε2

)
+e−ρ(

√
n2−ε2+2n)

(
n−

√
n2 − ε2

)
+ e(−2h+ρ)

√
n2−ε2−2nρ

(
n+

√
n2 − ε2

)
As ε→ 0, we get that for any �xed n ≥ 1

Pn → 1 + 2e−2nρ and Qn →
1− e−2nh

1 + e−2nh
.

Choose R1 and R2 so that h = R1−R2
2 > ln 7

2 and ρ = R1−ρ1 <
ln 2
2 . With this choice of parameters

we get Pn > 2 and Qn >
3
4 for all n ≥ 1 for su�ciently small ε. Therefore, for su�ciently small
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ε, PnQn > 1 for all n ≥ 1. Finally, using P0 ≥ 0 and the elementary inequality a2 + b2 ≥ 2ab, it
follows from (89) and (87) that

Eε[uε, Bext] ≥ S(1)
ε [wε] ≥ π

∞∑
n=1

n
√
PnQn[|Re(an)||Im(bn)|+ |Re(bn)||Im(an)|] > π|p| (92)

Analogously, we can obtain a similar bound in Bint:

Eε[uε, Bint] ≥ inf
w∈K2

ε

S(2)
ε [w] > π|q| (93)

Combining (92) and (93), we see that Eε[uε] > π(|p|+ |q|), which contradicts Proposition 3.

References

[1] V. Georgescu A. Boutet de Monvel-Berthier and R. Purice. A boundary value problem related
to the Ginzburg-Landau model. Comm. Math. Phys., 142:1728�1762, 1991.

[2] A.Vasil'eva A.Tikhonov and A.Sveshnikov. Di�erential Equations. Springer-Verlag, 1985.

[3] L. Berlyand, D. Golovaty, and V. Rybalko. Nonexistence of Ginzburg-Landau minimizers with
prescribed degree on the boundary of a doubly connected domain. C. R. Math. Acad. Sci.
Paris, 343(1):63�68, 2006.

[4] L. Berlyand and K.Voss. Symmetry Breaking in Annular Domains for a Ginzburg-Landau Su-
perconductivity Model. Proceedings of IUTAM 99/4 Symposium, Sydney, Australia, January,
Kluwer Academic Publishers, pages 189�200, 2001.

[5] L. Berlyand and P. Mironescu. Ginzburg-Landau minimizers in perforated
domains with prescribed degrees. preprint available at http://math.univ-
lyon1.fr/ mironescu/prepublications.htm.

[6] L. Berlyand and P. Mironescu. Ginzburg-Landau minimizers with prescribed degrees. Capacity
of the domain and emergence of vortices. J. Funct. Anal., 239:76�99, 2006.

[7] L. Berlyand and V. Rybalko. Solution with vortices of a semi-sti� boundary value
problem for the Ginzburg-Landau equation. J. Eur. Math. Soc., 12:1497�1531, 2010.
http://www.math.psu.edu/berlyand/publications/publications.html.

[8] F. Bethuel, H. Brezis, and F. Hélein. Ginzburg-Landau Vortices. Progress in Nonlinear Di�er-
ential Equations and their Applications, 13. Birkhäuser Boston Inc., Boston, MA, 1994.

[9] M. Dos Santos. Local minimizers of the Ginzburg-Landau functional with prescribed degrees.
J. Funct. Anal., 257(4):1053�1091, 2009.

[10] D. Golovaty and L.Berlyand. On uniqueness of vector-valued minimizers of the Ginzburg-
Landau functional in annular domainsl. Calculus of Variations, 14:213�232, 2002.

[11] L. Lassoued and P. Mironescu. Ginzburg-Landau type energy with discontinuous constraint.
J. Anal. Math., 77:1�26, 1999.

[12] O.Misiats L.Berlyand and V.Rybalko. Near boundary vortices in a magnetic Ginzburg-Landau
model: Their locations via tight lower bounds. Journal of Functional Analysis, 258:1�23, 2010.

17



[13] O.Misiats L.Berlyand and V.Rybalko. Minimizers of the magnetic Ginzburg-Landau functional
in simply connected domain with prescribed degree on the boundary. Communications in
Contemporary Mathematics, 13(1), 2011.

[14] E. Sandier and S. Serfaty. Vortices in the Magnetic Ginzburg-Landau Model. Birkhäuser Boston
Inc., Boston, MA, 2007.

18


